Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Nat Commun ; 13(1): 5104, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2016698

ABSTRACT

A subset of patients has long-lasting symptoms after mild to moderate Coronavirus disease 2019 (COVID-19). In a prospective observational cohort study, we analyze clinical and laboratory parameters in 42 post-COVID-19 syndrome patients (29 female/13 male, median age 36.5 years) with persistent moderate to severe fatigue and exertion intolerance six months following COVID-19. Further we evaluate an age- and sex-matched postinfectious non-COVID-19 myalgic encephalomyelitis/chronic fatigue syndrome cohort comparatively. Most post-COVID-19 syndrome patients are moderately to severely impaired in daily live. 19 post-COVID-19 syndrome patients fulfill the 2003 Canadian Consensus Criteria for myalgic encephalomyelitis/chronic fatigue syndrome. Disease severity and symptom burden is similar in post-COVID-19 syndrome/myalgic encephalomyelitis/chronic fatigue syndrome and non-COVID-19/myalgic encephalomyelitis/chronic fatigue syndrome patients. Hand grip strength is diminished in most patients compared to normal values in healthy. Association of hand grip strength with hemoglobin, interleukin 8 and C-reactive protein in post-COVID-19 syndrome/non-myalgic encephalomyelitis/chronic fatigue syndrome and with hemoglobin, N-terminal prohormone of brain natriuretic peptide, bilirubin, and ferritin in post-COVID-19 syndrome/myalgic encephalomyelitis/chronic fatigue syndrome may indicate low level inflammation and hypoperfusion as potential pathomechanisms.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Adult , Biomarkers , COVID-19/complications , COVID-19/epidemiology , Canada/epidemiology , Fatigue Syndrome, Chronic/complications , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/epidemiology , Female , Germany/epidemiology , Hand Strength , Humans , Male , Pandemics , Prospective Studies , Post-Acute COVID-19 Syndrome
3.
Crit Care Explor ; 2(9): e0207, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1795073

ABSTRACT

OBJECTIVES: To determine whether placental cell therapy PLacental eXpanded (PLX)-PAD (Pluristem Therapeutics, Haifa, Israel) may be beneficial to treating critically ill patients suffering from acute respiratory distress syndrome due to coronavirus disease 2019. DESIGN: Retrospective case report of critically ill coronavirus disease 2019 patients treated with PLacental eXpanded (PLX)-PAD from March 26, 2020, to April 4, 2020, with follow-up through May 2, 2020. SETTING: Four hospitals in Israel (Rambam Health Care Campus, Bnai Zion Medical Center, and Samson Assuta Ashdod University Hospital), and Holy Name Medical Center in New Jersey. PATIENTS: Eight critically ill patients on invasive mechanical ventilation, suffering from acute respiratory distress syndrome due to coronavirus disease 2019. INTERVENTIONS: Intramuscular injection of PLacental eXpanded (PLX)-PAD (300 × 106 cells) given as one to two treatments. MEASUREMENTS AND MAIN RESULTS: Mortality, time to discharge, and changes in blood and respiratory variables were monitored during hospitalization to day 17 posttreatment. Of the eight patients treated (median age 55 yr, seven males and one female), five were discharged, two remained hospitalized, and one died. By day 3 postinjection, mean C-reactive protein fell 45% (240.3-131.3 mg/L; p = 0.0019) and fell to 77% by day 5 (56.0 mg/L; p < 0.0001). Pao2/Fio2 improved in 5:8 patients after 24-hour posttreatment, with similar effects 48-hour posttreatment. A decrease in positive end-expiratory pressure and increase in pH were statistically significant between days 0 and 14 (p = 0.0032 and p = 0.00072, respectively). A decrease in hemoglobin was statistically significant for days 0-5 and 0-14 (p = 0.015 and p = 0.0028, respectively), whereas for creatinine, it was statistically significant between days 0 and 14 (p = 0.032). CONCLUSIONS: Improvement in several variables such as C-reactive protein, positive end-expiratory pressure, and Pao2/Fio2 was observed following PLacental eXpanded (PLX)-PAD treatment, suggesting possible therapeutic effect. However, interpretation of the data is limited due to the small sample size, use of concomitant investigational therapies, and the uncontrolled study design. The efficacy of PLacental eXpanded (PLX)-PAD in coronavirus disease 2019 should be further evaluated in a controlled clinical trial.

4.
Front Immunol ; 13: 840126, 2022.
Article in English | MEDLINE | ID: covidwho-1775673

ABSTRACT

Morbidity and mortality of COVID-19 is increased in patients with inborn errors of immunity (IEI). Age and comorbidities and also impaired type I interferon immunity were identified as relevant risk factors. In patients with primary antibody deficiency (PAD) and lack of specific humoral immune response to SARS-CoV-2, clinical disease outcome is very heterogeneous. Despite extensive clinical reports, underlying immunological mechanisms are poorly characterized and levels of T cellular and innate immunity in severe cases remain to be determined. In the present study, we report clinical and immunological findings of 5 PAD patients with severe and fatal COVID-19 and undetectable specific humoral immune response to SARS-CoV-2. Reactive T cells to SARS-CoV-2 spike (S) and nucleocapsid (NCAP) peptide pools were analyzed comparatively by flow cytometry in PAD patients, convalescents and naïve healthy individuals. All examined PAD patients developed a robust T cell response. The presence of polyfunctional cytokine producing activated CD4+ T cells indicates a memory-like phenotype. An analysis of innate immune response revealed elevated CD169 (SIGLEC1) expression on monocytes, a surrogate marker for type I interferon response, and presence of type I interferon autoantibodies was excluded. SARS-CoV-2 RNA was detectable in peripheral blood in three severe COVID-19 patients with PAD. Viral clearance in blood was observed after treatment with COVID-19 convalescent plasma/monoclonal antibody administration. However, prolonged mucosal viral shedding was observed in all patients (median 67 days) with maximum duration of 127 days. PAD patients without specific humoral SARS-CoV-2 immunity may suffer from severe or fatal COVID-19 despite robust T cell and normal innate immune response. Intensified monitoring for long persistence of SARS-CoV-2 viral shedding and (prophylactic) convalescent plasma/specific IgG as beneficial treatment option in severe cases with RNAemia should be considered in seronegative PAD patients.


Subject(s)
COVID-19 , Interferon Type I , Primary Immunodeficiency Diseases , Antibodies, Viral , COVID-19/therapy , Humans , Immunity, Humoral , Immunization, Passive , RNA, Viral , SARS-CoV-2 , T-Lymphocytes , COVID-19 Serotherapy
5.
Mol Ther Methods Clin Dev ; 25: 52-73, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1702408

ABSTRACT

Solid organ transplant (SOT) recipients receive therapeutic immunosuppression that compromises their immune response to infections and vaccines. For this reason, SOT patients have a high risk of developing severe coronavirus disease 2019 (COVID-19) and an increased risk of death from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Moreover, the efficiency of immunotherapies and vaccines is reduced due to the constant immunosuppression in this patient group. Here, we propose adoptive transfer of SARS-CoV-2-specific T cells made resistant to a common immunosuppressant, tacrolimus, for optimized performance in the immunosuppressed patient. Using a ribonucleoprotein approach of CRISPR-Cas9 technology, we have generated tacrolimus-resistant SARS-CoV-2-specific T cell products from convalescent donors and demonstrate their specificity and function through characterizations at the single-cell level, including flow cytometry, single-cell RNA (scRNA) Cellular Indexing of Transcriptomes and Epitopes (CITE), and T cell receptor (TCR) sequencing analyses. Based on the promising results, we aim for clinical validation of this approach in transplant recipients. Additionally, we propose a combinatory approach with tacrolimus, to prevent an overshooting immune response manifested as bystander T cell activation in the setting of severe COVID-19 immunopathology, and tacrolimus-resistant SARS-CoV-2-specific T cell products, allowing for efficient clearance of viral infection. Our strategy has the potential to prevent severe COVID-19 courses in SOT or autoimmunity settings and to prevent immunopathology while providing viral clearance in severe non-transplant COVID-19 cases.

6.
Front Immunol ; 12: 687449, 2021.
Article in English | MEDLINE | ID: covidwho-1332119

ABSTRACT

Despite RT-PCR confirmed COVID-19, specific antibodies to SARS-CoV-2 spike are undetectable in serum in approximately 10% of convalescent patients after mild disease course. This raises the question of induction and persistence of SARS-CoV-2-reactive T cells in these convalescent individuals. Using flow cytometry, we assessed specific SARS-CoV-2 and human endemic coronaviruses (HCoV-229E, -OC43) reactive T cells after stimulation with spike and nucleocapsid peptide pools and analyzed cytokine polyfunctionality (IFNγ, TNFα, and IL-2) in seropositive and seronegative convalescent COVID-19 patients as well as in unexposed healthy controls. Stimulation with SARS-CoV-2 spike and nucleocapsid (NCAP) as well as HCoV spike peptide pools elicited a similar T cell response in seropositive and seronegative post COVID-19 patients. Significantly higher frequencies of polyfunctional cytokine nucleocapsid reactive CD4+ T cells (triple positive for IFNγ, TNFα, and IL-2) were observed in both, seropositive (p = 0.008) and seronegative (p = 0.04), COVID-19 convalescent compared to healthy controls and were detectable up to day 162 post RT-PCR positivity in seronegative convalescents. Our data indicate an important role of NCAP-specific T cells for viral control.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus 229E, Human/physiology , SARS-CoV-2/physiology , Adult , COVID-19 Serological Testing , Cells, Cultured , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Lymphocyte Activation , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
7.
Nat Commun ; 12(1): 1961, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1169399

ABSTRACT

The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-ß, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-ß. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-ß, and is distracted from itself.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Transforming Growth Factor beta/immunology , Adult , Aged , Aged, 80 and over , COVID-19/virology , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Interleukins/immunology , Male , Middle Aged , Plasma Cells/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
Front Immunol ; 11: 628971, 2020.
Article in English | MEDLINE | ID: covidwho-1083815

ABSTRACT

Clinical trials on the use of COVID-19 convalescent plasma remain inconclusive. While data on safety is increasingly available, evidence for efficacy is still sparse. Subgroup analyses hint to a dose-response relationship between convalescent plasma neutralizing antibody levels and mortality. In particular, patients with primary and secondary antibody deficiency might benefit from this approach. However, testing of neutralizing antibodies is limited to specialized biosafety level 3 laboratories and is a time- and labor-intense procedure. In this single center study of 206 COVID-19 convalescent patients, clinical data, results of commercially available ELISA testing of SARS-CoV-2 spike-IgG and -IgA, and levels of neutralizing antibodies, determined by plaque reduction neutralization testing (PRNT), were analyzed. At a medium time point of 58 days after symptom onset, only 12.6% of potential plasma donors showed high levels of neutralizing antibodies (PRNT50 ≥ 1:320). Multivariable proportional odds logistic regression analysis revealed need for hospitalization due to COVID-19 (odds ratio 6.87; p-value 0.0004) and fever (odds ratio 3.00; p-value 0.0001) as leading factors affecting levels of SARS-CoV-2 neutralizing antibody titers in convalescent plasma donors. Using penalized estimation, a predictive proportional odds logistic regression model including the most important variables hospitalization, fever, age, sex, and anosmia or dysgeusia was developed. The predictive discrimination for PRNT50 ≥ 1:320 was reasonably good with AUC: 0.86 (with 95% CI: 0.79-0.92). Combining clinical and ELISA-based pre-screening, assessment of neutralizing antibodies could be spared in 75% of potential donors with a maximal loss of 10% of true positives (PRNT50 ≥ 1:320).


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Blood Donors , COVID-19/immunology , COVID-19/therapy , Adolescent , Adult , Age Factors , Aged , Convalescence , Female , Fever , Humans , Immunization, Passive , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Sex Factors , Young Adult , COVID-19 Serotherapy
9.
Front Immunol ; 11: 607918, 2020.
Article in English | MEDLINE | ID: covidwho-1021890

ABSTRACT

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and -OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


Subject(s)
Antibodies, Viral/blood , Common Variable Immunodeficiency/immunology , Coronaviridae/immunology , Immunoglobulin G/blood , T-Lymphocytes/immunology , Adult , Aged , Common Variable Immunodeficiency/blood , Cross Reactions , Cytokines/immunology , Female , Humans , Male , Middle Aged , Young Adult
10.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-694631

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Subject(s)
Coronavirus Infections/immunology , Myeloid Cells/immunology , Myelopoiesis , Pneumonia, Viral/immunology , Adult , Aged , CD11 Antigens/genetics , CD11 Antigens/metabolism , COVID-19 , Cells, Cultured , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , HLA-DR Antigens/genetics , HLA-DR Antigens/metabolism , Humans , Male , Middle Aged , Myeloid Cells/cytology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Proteome/genetics , Proteome/metabolism , Proteomics , Single-Cell Analysis
11.
Front Immunol ; 11: 1091, 2020.
Article in English | MEDLINE | ID: covidwho-589811

ABSTRACT

Numerous clinical trials of mesenchymal stromal/stem cells (MSCs) as a new treatment for coronavirus-induced disease (COVID-19) have been registered recently, most of them based on intravenous (IV) infusion. There is no approved effective therapy for COVID-19, but MSC therapies have shown first promise in the treatment of acute respiratory distress syndrome (ARDS) pneumonia, inflammation, and sepsis, which are among the leading causes of mortality in COVID-19 patients. Many of the critically ill COVID-19 patients are in a hypercoagulable procoagulant state and at high risk for disseminated intravascular coagulation, thromboembolism, and thrombotic multi-organ failure, another cause of high fatality. It is not yet clear whether IV infusion is a safe and effective route of MSC delivery in COVID-19, since MSC-based products express variable levels of highly procoagulant tissue factor (TF/CD142), compromising the cells' hemocompatibility and safety profile. Of concern, IV infusions of poorly characterized MSC products with unchecked (high) TF/CD142 expression could trigger blood clotting in COVID-19 and other vulnerable patient populations and further promote the risk for thromboembolism. In contrast, well-characterized products with robust manufacturing procedures and optimized modes of clinical delivery hold great promise for ameliorating COVID-19 by exerting their beneficial immunomodulatory effects, inducing tissue repair and organ protection. While the need for MSC therapy in COVID-19 is apparent, integrating both innate and adaptive immune compatibility testing into the current guidelines for cell, tissue, and organ transplantation is critical for safe and effective therapies. It is paramount to only use well-characterized, safe MSCs even in the most urgent and experimental treatments. We here propose three steps to mitigate the risk for these vulnerable patients: (1) updated clinical guidelines for cell and tissue transplantation, (2) updated minimal criteria for characterization of cellular therapeutics, and (3) updated cell therapy routines reflecting specific patient needs.


Subject(s)
Coronavirus Infections/therapy , Mesenchymal Stem Cell Transplantation/methods , Pneumonia, Viral/therapy , Transplantation Immunology , Administration, Intravenous , Blood Coagulation Disorders/etiology , COVID-19 , Cell- and Tissue-Based Therapy/methods , Coronavirus Infections/complications , Coronavirus Infections/immunology , Guidelines as Topic , Humans , Injections, Intramuscular , Mesenchymal Stem Cell Transplantation/adverse effects , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology
SELECTION OF CITATIONS
SEARCH DETAIL